

Theory of correlated fermionic condensed matter

1. Correlated electrons made simple

a. What are electronic correlations and where do they show up?

XIV. Training Course in the Physics of Strongly Correlated Systems Salerno, October 5, 2009

Dieter Vollhardt

Supported by Deutsche Forschungsgemeinschaft through SFB 484

Outline:

- "Correlations"
- Electronic correlations in the periodic table
- Fermi liquid theory
- Electronic correlations in solids: Examples
- How to detect electronic correlations: e.g., photoemission spectroscopy
- Model approaches to correlated electon systems: Hubbard model

"Correlations"

Correlation [lat.]: *con* + *relatio* ("*with relation*")

Grammar: either ... or

Mathematics, natural sciences:

$$\langle AB \rangle \neq \langle A \rangle \langle B \rangle$$

e.g., densities:

$$\langle \rho(\mathbf{r})\rho(\mathbf{r'})\rangle \neq \langle \rho(\mathbf{r})\rangle\langle \rho(\mathbf{r'})\rangle$$

Beyond (standard) mean-field theory [Weiss/Hartree-Fock,...]

correlation ≠ causality

Short-range spatial correlations in everyday life

Time average insufficient

Correlations *Vs.* long-range order

(Sempe)

Electronic Correlations in the Periodic Table

Narrow d, f-orbitals

strong electronic correlations

Periodic Table of the Elements

Transition metals: Spin, charge, orbital order; electron-lattice coupling, Mott-Hubbard metal-insulator transitions, high T_c , ...

Transition metal oxides: direct view of d-electrons

Rare earth elements: Heavy fermion-, Kondo lattice-, RKKY-behavior, unconventional superconductivity, non-Fermi liquid behavior, volume anomalies

Periodic Table of the Elements

Actinides: Heavy fermion behavior, unconventional superconductivity, volume anomalies, strong spin-orbit coupling

Electrons vs. Quasiparticles, Fermi liquid theory

Electrons

Spin =
$$\frac{1}{2}\hbar$$
 Fermion

Fermi-Dirac statistics

Pauli exclusion principle of many fermions

Fermi body/surface

No such thing for bosons!

Exact k-states ('particles'): infinite life time

Switch on interaction adiabatically (d=3)

- Well-defined k-states ("quasiparticles") with finite life time
 - effective mass
 - effective interaction

Electronic Correlations in Solids: Examples

Simple metals

Consequence of elementary excitations (quasiparticles)

$$\lim_{T\to 0}\frac{c_V}{T}\approx \gamma_0 \Longrightarrow m^*\approx m$$

"Heavy Fermions"

Steglich *et al.* (1979)

Magnetic impurity in a metallic host: The Kondo effect

Explanation of the three peak structure?

Excursion:

Detection of electronic correlations in solids by Photoemission spectroscopy

1. Photoemission Spectroscopy (PES)

Angular Resolved PES = ARPES

Measures occupied states of electronic spectral function

Ideal spectral function of a material

Ideal spectral function of a material

2. Inverse Photoemission Spectroscopy (IPES)

Measures unoccupied states of electronic spectral function

Information also available by:

X-ray Absorption Spectroscopy (XAS)

IPES/XAS

Ideal spectral function of a material

Photoemission spectra of Ni: -6 eV satellite

3.

Guillot,..., Falicov (1977)

Not reproducible by Density Functional Theory/ Local Density Approximation

Explanation of the -6 eV satellite?

FIG. 1. Photoemission spectra of a clean Ni(100) surface for photon energy $\hbar \omega$ between 63 and 85 eV. The peak *A* corresponds to the *d* bands; *B* (dashed area) is the structure located at 6 eV from the Fermi level. The arrows indicate the Auger transition.

Photoemission spectra of (Sr,Ca)VO₃

Osaka - Augsburg - Ekaterinburg collaboration: Sekiyama et al., 2004

Reason for shift of spectral weight?

Photoemission spectra of NiO

Rice, McWhan (1970); McWhan, Menth, Remeika, Brinkman, Rice (1973)

- PI ← → PM: 1. order transition without lattice symmetry change
- Anomalous slope of P(T)
 → Pomeranchuk effect in ³He

Microscopic explanation?

Correlated electron materials

Fascinating topics for fundamental research

- large resistivity changes
- huge volume changes
- •high T_c superconductivity
- •strong thermoelectric response
- colossal magnetoresistance
- •gigantic non-linear optical effects /

with

Technological applications:

- sensors, switches
- magnetic storage
- refrigerators
- functional materials, ...

Large susceptibilities

Model approaches to correlated electrons

Gutzwiller, 1963 Hubbard, 1963 Kanamori, 1963

→Microscopic theory of ferromagnetism?

$$H = \sum_{\mathbf{k},\sigma} \boldsymbol{\varepsilon}_{\mathbf{k}} n_{\mathbf{k}\sigma} + \boldsymbol{U} \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow}$$
$$= -\boldsymbol{t} \sum_{\langle \mathbf{i},\mathbf{j} \rangle,\sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + \boldsymbol{U} \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow}$$

Correlation phenomena: Metal-insulator transition Ferromagnetisms,...

$$\left\langle n_{\mathbf{i}\uparrow}^{}n_{\mathbf{i}\downarrow}^{}\right\rangle \neq \left\langle n_{\mathbf{i}\uparrow}^{}\right\rangle \left\langle n_{\mathbf{i}\downarrow}^{}\right\rangle$$

Hartree-(Fock) mean-field theory generally insufficient

Beyond models: How to include material-specific details?

Crystal structure

 $\mathsf{SrVO}_3: \angle 123 = 180^\circ$

 $\mathsf{CaVO}_3: \angle 123 \approx 162^{\circ}$

→ Dynamical Mean-Field Theory